Homework Check

1. yes

no

no
2. yes
3. a, c, b
4. a, b, c
5. v, z, y, w, x
6. By the Triangle Inequality Conjecture, the sum of 21 cm and 25 cm should be greater than 48 cm .
7. $b=55^{\circ}$, but $55^{\circ}+130^{\circ}>180^{\circ}$, which is impossible by the Triangle Sum Conjecture.
8. 135°
9. 72°
10. $6<$ length <102
11. Probability is 0 -lengths given are not a triangle
12. $A B E$
13. $a=90^{\circ}, b=68^{\circ}, c=112^{\circ}, d=112^{\circ}, e=68^{\circ}, f=$

$$
56^{\circ}, g=124^{\circ}, h=124^{\circ}
$$

Complete Triangle Inequality Investigation.

Proof Practice

Given: $\angle 1$ is supplementary to $\angle 6$
Prove: $l \| m$ +
<1 is supplementary to <6
<5 and <2 are supplementary

So <4 and <6 are congruent
<4 and <2 are vertical angles across the transversal

Reasons
Corresponding Angles Conjecture
Corresponding Angle Conjecture

Alternate Interior Conjecture Converse Parallel Lines Conjecture

Therefore
$\therefore l \| m$

Complete the proof that $\overline{Q S} \cong \overline{Q R}$.

Therefore $<\mathrm{T}$'s are the same

Or QR is congruent to QS and the proof is that the converse of IsoscelesTriangles conjecture

Given: $l \| n, \angle 12 \cong \angle 8$
Prove: $j \| k$

Statements	Reasons
$<4 \cong<8$	Corresponding angle conjecture
$<10 \cong<2$	corresponding angle conjecture
Cis the transversal	Parallel lines conjecture
Therefore jll k	

